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ABSTRACT 

There are exactly 37 combinatorial types of neighborly 6-polytopes with 10 
vertices. A full description is given. 

I. Introduction 

A neighborly d-polytope is a d-polytope K (in R u) such that the convex hull of 

any [~d] vertices of K is a face of K. A well-known family of simplicial 

neighborly polytopes is the class of cyclic polytopes. (Cf. Gr/inbaum [GR] 
section 4.7, chapter 7 and section 9.6 for the basic facts concerning neighborly 

and cyclic polytopes.) 
Denote by g(v,d) the number of combinatorial types of neighborly d- 

polytopes with v vertices, and by g~ (v, d) the number of combinatorial types of 
simplicial neighborly d-polytopes with v vertices. 

Note that for even d, g,(v, d) = g(v, d). For every d and v > d there is a cyclic 

d-polytope with v vertices, hence gs(v, d ) ~  1. Barnette [BR] and the second 
author [SH2] proved independently that g~(v, d)--->oo as v---~, for any fixed 

d=>3. For even d, g(d+l,d)=g(d+2, d)=g(d+3, d)=l. For odd d=>3, 
g(d + 1, d) = g~ (d + 1, d) = g~ (d + 2, d) = 1, and g(d + 2, d) = 2. Aitshuler and 

McMullen [AM] computed g~(d +3, d) for odd d. The first interesting case in 

even dimension is d = 4, v = 8. Grtinbaum [GR, p. 124] showed that g(8, 4) > 1 

and, in fact, g(8,4)= 3 (Grtinbaum and Sreedharan [GS]). The second author 

showed that 

1 1 I(2i+1) g(2m + 4 , 2 m ) > 4 (  m +2),=2 
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(see [SH2]). It is also known that g(9, 4) = 23 and g(10, 4) = 431 (see [SH1], [AS], 

[ALl, [BoSt2]). In this paper we deal with the first non-trivial case in dimension 

6, i.e., v = 10. 

The main result of this paper is: 

THEOREM 1. There are exactly 37 combinatorial types of neighborly 6- 
polytopes with 10 vertices. 

The problems of enumerating d-polytopes and combinatorial (d - 1)-spheres 

are closely related. Although we tried to avoid generating an excessive number 

of non-polytopal spheres, we still obtained as a by-product of our computations: 

THEOREM 2. There are at least 14 non-polytopal combinatorial types of 
3-neighborly simplicial 5-spheres with 10 vertices. 

In Section 2 we survey the concepts and results needed for enumerating 

neighborly 6-polytopes with 10 vertices. In Section 3 we describe the methods 

used in the computation, and we prove that g(10,6) =< 37. In Sections 4, 5 and 6 

we deal with the realization problem and show that g(10, 6)= 37. 

We use the notation of [GR]. 

2. Theoretical background 

We obtained the polytopes with 10 vertices by adding a tenth vertex to a 

polytope with 9 vertices, using the beneath-beyond technique (see Gr~nbaum 

[GR, section 5.2]). We need some results about the connection between the 

facial structure of a neighborly polytope and the facial structure of its sub- 

polytopes. 
Throughout this section, the letter O denotes a neighborly 2m-polytope, not a 

simplex. Since Q is a simplicial polytope, we can identify each proper face of Q 

with its set of vertices. Thus, we regard the boundary complex ~ ( Q )  as an 

abstract simplicial complex (i.e., a collection of sets, closed under the operation 

of taking a subset). 

A set M of vertices of Q is a missing[ace of O if M Z  g3(Q) but S ~ ~ ( O )  

for every S ~ M. 
We denote by ~ ( Q )  the set of missing faces of Q. The following Lemma is 

trivial (see Altshuler and Perles lAP, section 2]): 

LEMMA 1. A subset T of vert Q belongs to ~J(Q) if[ no subset of T belongs to 

~t(O). • 
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The second author [SH2, theorem 2.4] proved that all missing faces of O are 

of size m + 1. This implies: 

LEMMA 2. Let M be a subset of vertO. M is a missing face of 0 if[ 
] M l = m + l  and M ~ ( O ) .  

Choose a vertex x of Q and define: V = vert Q\{x}, P = conv V. For a facet F 

of P, we say that x covers F if x lies beyond F with respect to P. Denote by (¢ the 

set of facets of P that x covers. Note that x lies beneath all the facets of P not in 

~. ~ ( Q )  is determined by ~ ( P )  and ~, as follows (cf. Gr/inbaum [GR, section 

5.21): 

LEMMA 3. Let T be a subset of V. T E ~ ( Q ) iff P has a facet F which includes 
T and F ~  c~. T U {x} E ~ ( Q )  iffP has facets FI, F2 which include T, FIE ~ and 
F2 Cg. • 

The second author proved [SH2, lemma 2.11] that M(Q)  and x determine 

LEMMA 4. Assume M C  V, I M l = m + l .  Then M ~ I ( P )  iff M E A t ( Q )  
and (M\{t}) U {x} E dl( Q ) for some tin M. • 

Let A be an abstract simplicial complex. A face (i.e., member) F of A is 

j-dimensional (or a j-face) if I l l  = j + 1. a is a d-complex (or a d-dimensional 
complex) if it has a d-face but no (d + 1)-face. A is homogeneous if all its 

maximal faces have the same dimension. 

For a finite set F we denote the set of all subsets of F by F. For a collection 

of finite sets we denote by A(~) the complex U ~ F .  

Let ~ be a collection of facets of a simplicial (d + 1)-polytope P. ~: generates 

a d-dimensional subcomplex A = A(~) of ~ (P) .  Define the boundary complex 
3A as follows: The maximal faces of OA are the subfacets of P that are contained 

in exactly one member of ~. Each F in 3A is called a boundary face of A; the 

remaining faces of A are its interior faces. 
It turns out that (I) is an interior face of A iff all facets of P that include cI) 

belong to ~. This follows, by duality, from the connectivity of the graph of the 

face (~ dual to • in the polytope P* dual to P. 
Define: A ° = A \ 3  A. For - l<=j<-d,  fj(A), /~(3A) and /~(A °) denote the 

number of j-faces of P which belong to A, tgA and A ° respectively. 

Define: f (A)= (f0(A) . . . . .  fd (A)). f(3A), f(A °) are defined similarly. 

With the f-vector f(A) of A we associate an h-vector h(A)= (h0,. . . ,  hd+l), 

defined by: 
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hj = h, (A) = ~ ( - I)' -j + 1 - i ,=o + 1 - j  ~_,(A), 0 < j = < d + l .  

Now we are ready to discuss the shellability of c¢. Several equivalent 

definitions of this notion have appeared in the literature ([DKI], [DK2], [BM], 

[BL]). We chose the following definition ([BL]): 

An abstract simplicial d-complex A is shellable if A is homogeneous, and there 

is an ordering F~, F2 . . . . .  Fw of its maximal faces such that for every k, 2 < k ~ w, 

(,) P, n = U 
i=1 i~ l  

where 1 < sk < d + 1, and G~ . . . . .  G k . . . .  are distinct d-subsets of Fk. 

The sequence Ft . . . . .  Fw is called a shelling of A. 

REMARK: If every (d - 1)-face of h is included in at most two d-faces of A, 

then s~ is just the number of F,'s, j < k ,  that are adjacent to Fk (i.e., 

IF, nF,  l=d). It is known that hj(A)=l{k:2<=k<=w, sk =J}l ,  l=<J < = d + l .  

(See [BL, proposition 2], [MS, section 5.2].) 

Condition (*) is equivalent to the following condition, which is handier in 

computations: 
If l _ < - j < k  a n d l F k N F j l < d ,  t h e n F k f q F / C F ~  a n d l F k f q E [ = d  for some 

l = < i < k .  
A non-empty finite collection ~T of (d + 1)-sets is shellable if the d-complex 

A(,~) is shellable. 

LEMMA 5. Let ~ be a collection of facets of a simplicial (d + 1)-polytope. 

Assume F~ . . . . .  Fw is a shelling of ~;. Put A = A(~:). I f  • E A °, then • = F~ or 

D N~'=, G~ for some 2 <= k <= w. 

PROOF. Assume • ~ A ° and • ~ F~. Then • C F/ for some 2 --- j =< w. Let k 

be the last index j such that (I) C Fj. If • does not include N~'=~ G~, then Fk has a 

d-subset G that includes (l) but not f"l~) G~. Clearly, G is not a subset of Fj for 

j ~  k, thus G E OA, contradicting our assumption that • E A °. • 

It follows that, under the assumptions of Lemma 5, 

fj (A°) _- < ~'~ h,, 0 < j < d .  
i = d -  i d -  = = 

REMARK. The converse of Lemma 5 is also true. 

By the work of Bruggesser and Mani [BM], the set c¢ of facets of P covered by 
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x is shellable. Using the methods of Danaraj and Klee [DK1], it is easy to prove 

the following lemma: 

LEMMA 6. Let • be a face of P. Assume all the facets of P that include ~,  t in 

number, are in ~¢. Then :¢ has a shelling F , . . . ,  F, . . . . .  Fw, such that • C F i for 

l<j<=t. • 

Define: A = A(~). Lemma 3 implies the following: 

LEMMA 7. link(x; ~ ( Q ) )  = 3A and ast(x; ~ ( Q ) )  = ~ ( P ) \ A  °. • 

Let H be a hyperplane that strictly separates x from P. The polytope 
C)~ = Q (3 H is a vertex figure of Q at x. It is well known that the complexes 

~ (Qx)  and l i n k ( x ; ~ ( Q ) )  are isomorphic. Hence f j (0A)=f j (Qx)  for 0_-<j_- < 

2m - 2. Therefore 

fj (A °) = ~ (P) - fj (ast(x ; ~ (Q))) 

-- fj (P) - ~ (Q)  + fj_~(link(x ; ~ ( Q ) ) )  

=~(P)- f j (Q)+f~- , (Qx) ,  0--<j- -<2m-1.  

The f-vector f (K)  of a simplicial neighborly d-polytope K is a function of d 

and Ivert K I only. Since Qx is a neighborly (2m - 1)-polytope, it follows that: 

LEMMA 8. f(A°),f(cgA),f(A)andh(A)arefunctionsofIVlandmonly. • 

Assume in the sequel that m = 3 and ] V I = 9. Then 

f (Q)  = (10,45,120,185,150,50), f(P) = (9,36,84,117,90,30), 

f(O~ ) = (9, 36, 74, 75, 30). 

(See [GR, Table 3, p. 425].) The formulas given above for fj (A °) and h(A) yield: 

LEMMA 9. f(A°) = (0, 0, 0, 6,15,10), f(A) = (9, 36, 74, 81, 45,10) and h(A)=  

(1,3,6,0,0,0,0).  • 

This implies, by Lemma 5 and the Remark preceding it: 

LEMMA 10. Let F~ . . . . .  Fro be a shelling of c¢. Then six facets Fk are adjacent 

to exactly two members of {Fj . . . . .  Fk-,}, and three facets Fk are adjacent to exactly 

one member of {F~ . . . . .  Fk-~}. The six 3-fi~ces of A ° are exactly the intersections 

G~A G~(2_- < k _-< 10, sk =2).  • 

Q has 25 missing faces, since 

(10 ' ) -  f3 (O)=  2 1 0 - 1 8 5 =  25. 
\ 4 /  
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P has 9 missing faces. By Lemmas 2 and 3, the six 34aces of A ° are missing faces 

of Q. Therefore Q has 2 5 -  9 - 6  = 10 missing faces that contain the vertex x. 

Since x is an arbitrary vertex of Q, we conclude that every vertex of Q is 

contained in exactly 10 missing faces of Q. 

A useful tool for classifying finite combinatorial structures is the edge-valence 

matrix (cf. [AS]) defined below. 

For every two vertices (not necessarily different) x, y of Q, define: 

EV(Q, x, y)= I{M ~ ~t(Q): {x, y}C M}I. 

Choose an arbitrary ordering xt . . . . .  x~o of vert Q. Define an edge-valence matrix 

EV(Q) = (a0) by ai, = EV(Q, x,, xj), 1 - i, j =< 10. 

By the remark above, a, = 10 for all i. 

The matrix EV(Q) is symmetric. A different ordering of vert Q would yield 

another matrix EV(Q), similar to the original one. Thus 

LEMMA 11. de tEV(Q) i san invar ian to f thecombina tor ia l t ypeo fQ .  • 

REMARKS. Lemma 11 remains true if the diagonal entries a~ are replaced by 

/3 (EV(Q, x,, x,)) and the non-diagonal entries aij are replaced by 3,(EV(Q, x,, xj)) 

where /3 and ~/ are arbitrary real valued functions, defined on the natural 

numbers. 

The set dr(Q) in the definition of EV(Q, x, y) might as well be replaced by the 

set of all facets of Q, as in [AS]. Obviously, Lemma 11 holds also for this version 

of EV(Q). We shall use this "facet-edge-valence matrix" in step 3 of the 

computations below. 

An edge ab of Q is universal if for every (m - 1)-subset of vert Q, {a, b} t9 S E 
~ ( Q )  (or, equivalently, {a, b} t_J S ~  d/(Q)). 

LEMMA 12. A neighborly 2m-polytope with 2m + 3 or more vertices is cyclic 

iff it has a hamiltonian circuit of universal edges. 

PROOF. See [SH2, theorem 3.5]. • 

An edge ab of Q is universal itt EV(Q, a, b) = 0. Therefore one can easily see 

from EV(Q) if Q is cyclic or not. 

3. Computations 

From here on P denotes a cyclic 6-polytope with 9 vertices. Denote the 

vertices of P by 1 ,2 , . . . ,9 ,  with the cyclic order 1,2 . . . .  ,9, 1. 
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The facets of P are: 

123456 123467 124567 234567 123478 

124578 234578 125678 235678 345678 

123459 123569 134569 123679 134679 

145679 123489 124589 234589 125689 

235689 345689 123789 134789 145789 

126789 236789 346789 156789 456789 

The missing faces of P are: 

1357 1358 1368 1468 2468 2469 2479 2579 3579 

Step 1. In this step we found all collections ~ of 10 facets of P which satisfy 

the following conditions: 

(1) c¢ has a shelling F~ . . . .  , Flo. 

(2) Six facets F~ are adjacent to exactly two members of {F~,..., Fk-i} and 

three facets Fk are adjacent to exactly one member of { F , . . . ,  Fk-,}. 

(3) For every interior 3-face • of A(~), ~ has a shelling F~ . . . . .  F,,, such that 

• CFj for l<=j<=t, where t = ]{FEqg:  F D ¢ } I .  

By Lemmas 6 and 10, these conditions are necessary for ~ to be a "covered 

cap". 

In step 2 we associated with each collection c¢ a complex (see (**) below), 

which may (or may not) be isomorphic to the boundary complex of a neighborly 

6-polytope with 10 vertices. 

If an automorphism ~ of P maps ~ onto ~2, then the corresponding 

complexes are, clearly, isomorphic by the mapping i ~ ~(i) for 1 <= i _-< 9 and 

10---~ 10. Hence it suffices to take a representative of each equivalence class of 

collections ~. 

It seems worthwhile to describe, in some detail, our algorithm for finding all 

those collections c¢. 
Under the automorphism group aut P of P there are 9 equivalence classes of 

3-faces of P, with representatives ~, . . . . .  ~ :  

1234 1245 1256 1236 1247 1346 1246 1235 1458 

We divided the collections ~ into 9 classes as follows: ~ belongs to class i 

(1 -< i < 9) if the complex A(~) has an interior 3-face equivalent (under aut P) to 

• ~, but has no interior 3-face equivalent to ~j (1 -<j < i). 

Call a collection ~ of class i special if ~i itself is an interior face of A(~). 

Clearly every collection of class i is equivalent under aut P to a special one. 
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To generate the special collections of class 1, consider 4p,. 4), is included in 5 

facets F~ . . . . .  F~ of P: 

123456 123467 123478 123489 123459. 

Note that F~ . . . . .  F~ is a shelling, and the sequence (s_., s~, s~, s.0 is (1, 1, 1,2). 

We extended the shelling F, . . . . .  F~ by a backtrack algorithm (see Danaraj and 

Klee [DK2]), in all possible ways, to a shelling F, . . . . .  F,,, with the restriction 

that sk = 2 for 6 _--- k < 10. This procedure clearly yields all the special collections 

of class 1. 

To generate the special collections of class 2 we started with the facets 

F~ . . . . .  F~ that include ~z: 

123456 124567 124578 124589 123459. 

As before, we extended F~ . . . . .  F5 to a shelling F~ . . . . .  F.,, with sk = 2 for 

6_<_k_<_ 10. 

Assume the facet F is a candidate for being chosen as Fk, for some 6 =< k <_- 10; 

that is,/~ A ( I..J~51/~/) = Gl U G2, where G,, G2 are two distinct 5-subsets of F. If 

the 3-face d~ = G~ f"l G2 is equivalent to qb,, then F is ruled out, since the choice 

Fk = F would lead to a collection ~ of class 1. 

In the same manner we generated the special collections of class i, i = 3 . . . . .  9, 

ruling out interior 3-faces that are equivalent to ~j for some j < i. 

We obtained altogether 371 non-equivalent collections ~, as follows: 

Class 1 2 3 4 5 6 7 8 9 

Number of collections 45 75 79 87 84 1 0 0 0 

Since we did not check whether condition (3) holds for each interior 3-face of 

~(~) ,  it is conceivable that some of the 371 collections obtained fail to satisfy 

condition (3). 

Step 2. For every collection qg found in Step 1 we constructed the complex 

(**) ~ ( O )  = ( ~ ( P ) \ , 5 ( ~ )  °) U {F U {10}: F e &z~(qg)}. 

Note that if ~ is a "covered cap", i.e., if ~ is the set of facets of P covered by 

some point x (for some realization of P), then ~ ( Q )  is just the boundary 

complex of the polytope Q = conv(P u {x}) with x replaced by 10. (See Lemma 

7.) If ~ is not a "covered cap", then ~ ( O )  is still a (triangulation of a) 5-sphere. 
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This follows from the shellability of ~. We omit the details, since we shall never 

use this fact, except in the statement of Theorem 2. For each complex ~ ( Q )  we 

calculated its set of missing faces, denoted by d/(Q).  As expected, all the missing 

faces found were of size 4. 

Then we sorted the complexes ~ ( Q )  according to the determinant de t (O)=  

det EV(Q). 

If de t (Q)~  det(O'), then ~ ( O )  and ~ ( Q ' )  are not isomorphic. We checked 

and found that ~ ( O )  and ~ ( Q ' )  were isomorphic whenever det(O) = det(Q'). 

We obtained 51 equivalence classes of spheres. These are listed in Table 1, in 

terms of their missing faces, in increasing order of their determinant. The vertex 

number 10 is represented as 0 in Tables 1, 2, 3. 

The complexes listed in Table 1 were obtained from the complexes ~ ( 0 )  

described above by renaming the vertices. After renaming, each equivalence 

class of vert Q, with respect to aut Q, became a set of consecutive numbers. 

Step 3. In this step we proved, in three ways, that 14 spheres are not 

polytopal. 

Let O be one of the 51 spheres listed in Table 1, and let x be a vertex of 0. We 

say that Q is obtained at x if there is a sphere Q' among the 371 spheres 

considered in step 2, and a combinatorial equivalence ~o from ~ ( O ' )  onto 

~ (O) ,  such that x = ~o(10). 

Note that if Q is a neighborly 6-polytope with 10 vertices, and x ~ vert O, then 

conv(vert Q\{x}) is cyclic, i.e., combinatoriaily equivalent to P. 

Since we have chosen all possible "covered caps" %v, up to equivalence under 

aut P, we have: 

LEMMA | 3. A polytopal sphere is obtained at all its vertices. • 

14 spheres in our list (O3~-Q5~) were not obtained at all their vertices, thus 

establishing: 

g(10,6)-<_ 37. 

Now we show two additional proofs of the non-polytopality of O~-O~.  

Suppose O~ is a polytope. 

Second proof: For a vertex x of Q~, find the missing faces of the subpolytope 

O~(x) = conv(vert O, \{x}) according to the rule of Lemma 4. Since O, (x) i s  

combinatorially equivalent to P, we should obtain 9 missing faces, for every 

choice of x. But in each of the cases 38 =< i <_- 51 we obtained 11 missing faces, for 

at least one choice of x. 



112 J. BOKOWSKI AND I. SHEMER Isr. J. Math. 

TABLE 1 
Representatives of classes 

det/100 Type of aut(O) Universal 
see Table Missing faces m and generators edges 

QI 

125(~) 

O~ 

1651~10 

174720 

O~ 

176520 

O, 

187392 

2 

O6 

194112 

4 

O7 

197960 

O. 

199680 

2 

1357 1358 1368 1468 2468 D~,, 
1359 1369 1469 2469 1379 1 2 3 4 5 
1479 2479 1579 2579 3579 (I ,2,3,4,5,6,7,8,9,0)  
24611 2470 2570 3570 2480 (I,9)(2,8)(3,7)(4,6) 
2580 3580 3680 3680 4680 

2357 2457 1368 1468 1378 Z~ 
2378 1478 2478 2359 1369 7 6 2 1 5 8 
3569 2579 1389 2389 3689 (1,2)(3,41(5,6)(7,8)(9,0) 
2450 146(/ 4561) 1470 2470 9 4 3 0 
4570 1680 2590 1690 5690 

1267 1467 1238 2358 1268 e 
2568 2678 2359 3459 2579 8 4 2 0 
4579 2679 4679 2580 3589 
1340 345(I 1460 1470 1670 6 3 7 9 1 5 
1380 35~1 1680 3490 4790 ~ 

2367 1348 1458 2368 3468 e 
2568 4568 2678 1459 1579 7 4 2 1 6 
2579 2679 1589 2589 4589 
1340 1450 23611 3460 1370 9 3 5 8 0 
2370 3670 1490 1790 2790 ~ 

2357 1468 3578 
1239 1249 2359 
2579 1489 4589 
1230 1240 2350 
237O 3 5 7 O  3670 

2357 1457 2457 
1468 1378 2378 
2359 2369 2379 
1450 1460 4570 
2590 4590 1690 

4678 5678 Z~ 
2459 1469 5 1 7 6 2 8 
4689 5789 (1,21(3,4)(5,6)(7,8)(9,0) ~ 
1360 1460 3 4 9 0 
1680 6780 ~ 

1368 2368 Z~ 
1478 2478 1 2 3 4 
2579 3689 (1,2)(3,4)(5,6)(7,8)(9,01 ~ 
1480 1680 5 8 6 7 
3690 5690 ~ 

3456 2357 3457 3567 
3468 4568 2359 3569 
2379 1289 2389 1689 
1460 4560 1270 1470 
4570 1280 1480 2790 

2345 3456 2457 3458 
3468 2459 1279 2579 
1689 4689 1789 5789 
1230 2340 2350 1360 
1270 2570 1670 1680 

1468 Z: 
1279 0 3 1 5 
3689 (1,2)(3,41(5,6)(7,8)(9,01 
2570 9 4 2 6 7 8 
1890 ~ 

1368 Z., 
4589 4 1 5 
6789 (2,3)(4,5)(6,7)(8,9) 
3460 6 2 8 7 3 9 
1790 ~ 
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TABLE 1 (continued) 

det/100 Type of aut(O) Universal 
see Table Missing faces m and generators edges 

204800 

3 

Oll) 

2(15000 

2 

Oi, 

206336 

2 

Or., 

206448 

2 

Ors 

206600 

2 

0,4 

207240 

2 

Ors 

207368 

3 

209088 

2 

2345 3456 2457 4567 1368 D. 
3568 4568 1279 2479 4579 4 1 5 
1689 5689 1789 4789 6789 (1,2,3)(4,6,9)(5,8,7) 
1230 2340 2350 1360 3560 (1,2)(4,8)(5.6)(7,9) 9 3 7 6 2 8 
1270 2470 1380 1290 1890 ~ 

2456 2357 2567 1468 4568 Z2+Z2 
1378 3578 1678 5678 2359 8 2 1 5 
2459 2569 1379 2379 3789 (1,21(3,41(5,81(6,71(9,0) 
1460 2460 4560 1380 1480 (1.31(2,4)(5.6)(7.8)(9,01 7 4 3 6 
1780 1390 2390 1490 2490 

1256 2356 1456 1257 2357 Z2 
1268 1468 1278 2378 1478 3 1 9 6 7 
3478 2359 2569 2379 3789 (1,2)(3,4)(5,61(7,81(9.0) ~ 
1460 1560 1480 4780 3490 4 2 0 5 8 
3590 4690 5690 3790 4890 ~ 

1256 2356 1456 2357 2567 Z2 
1468 1568 1269 1469 2379 (I.2)(3,4)(5,6)(7,8)(0,01 3 1 7 5 9 
3479 2679 4679 1489 4789 ~ 
1250 2350 2370 1480 3480 4 2 8 6 0 
1580 3580 3780 3790 4890 ~ 

3456 2357 3457 3567 2358 e 
3458 1468 3468 1469 4569 5 1 3 9 
1279 2579 1679 5679 4689 
1270 2370 2570 1280 2380 4 2 6 7 8 
1480 3480 1290 1690 1890 ~ 

1356 1456 1367 1467 2358 e 
3568 2378 2478 3678 4678 6 2 1 8 
1469 1569 1479 2479 4789 
1350 2350 3560 2380 2780 4 3 9 5 7 
1490 2490 1590 2590 2890 ~ 

2357 3457 t467 3467 3567 Zz 
2358 3458 1468 3466 4568 (1.2)(3,4)(5,61(7,8)(9,0) 3 1 5 
2359 1289 1489 2589 4589 
1460 1270 2370 1670 3670 4 2 6 7 8 
1290 2590 1690 2790 1890 ~ 

2347 2457 3467 4567 1258 Z3 
2458 1568 4568 2478 1369 (1,2,31(4,6,51(7,9,8) 4 1 7 
3469 1569 4569 3679 1589 
1230 2370 3470 1280 2580 6 2 9 5 3 8 
2780 1390 1690 3790 1890 ~ 
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TABLE 1 (continued) 

det/100 Type of aut(Q) Universal 
see Table Missing faces "~ and generators edges 

QL7 

209568 

2 

O~x 

212272 

2 

213208 

2 

215800 

2 

QzJ 

217032 

2 

022 

217408 

2 

025 

216624 

2 

Q24 

220128 

2 

2345 3 4 5 6  2 3 4 7  2 3 4 8  3458 e 
1278 2378 1569 4 5 6 9  3489 3 1 4 5 7 
1689 4689 1789 3 7 8 9  6789 ~ 
1250 2 3 5 0  2450 1560 4560 6 2 9 8 0 
1270 2370 1670 1690 1790 ~ 

2345 3456 1248 2 3 4 8  2458 e 
1278 3 4 5 9  3 5 6 9  3579 1679 3 1 5 2 9 
3679 1489 3489 1789 3789 ~ 
1240 2450 1260 2 5 6 0  3560 4 7 6 8 
1670 5670 1280 1780 6790 ~ 

2457 1368 4578 1678 4678 e 
5678 1239 2 3 4 9  2459 1369 4 1 5 
1279 2479 1389 1789 4789 
1230 2350 2 4 5 0  1 3 6 0  3560 6 2 8 3 7 
4560 4570 1680 5 6 8 0  2390 ~ 

2456 2458 1 3 6 8  2368 2568 e 
1378 2378 1478 2 4 7 8  2578 2 1 5 3 4 
2459 1379 1479 2 4 7 9  4579 ~ 
1360 2560 3 5 6 0  1 3 7 0  3680 6 7 8 9 
1390 1490 4590 1 6 9 0  5690 ~ 

2356 3 5 6 7  3568 1478 3578 e 
4578 1249 2 3 4 9  2359 1269 3 1 5 
2369 1479 3 4 7 9  3 5 7 9  4789 
1240 1260 2360 2560 1480 7 2 8 4 6 
1680 5680 1780 5 7 8 0  1490 ~ 

1467 2 4 6 7  2 3 4 8  2 3 5 8  2458 e 
2468 2 3 7 8  2678 1359 1379 2 1 8 3 6 
2379 1679 2 6 7 9  3 5 8 9  3789 ~ 
1350 1450 1460 2 4 6 0  4560 4 9 5 7 
3580 4580 1590 1 6 9 0  1790 ~ 

2356 1457 3 4 5 7  3 4 6 7  3567 e 
2368 3 4 6 8  3678 1479 3479 3 1 6 
1289 1489 2 6 8 9  4 6 8 9  4789 
1250 2350 2560 1570 3570 4 2 7 5 8 
1280 2680 1 2 9 0  1490 1590 ~ 

1457 3457 1567 3 5 6 7  2368 e 
3578 3 6 7 8  1249 1459 4579 3 1 8 
2389 2 4 8 9  3 5 8 9  4 5 8 9  3689 
1240 1 4 5 0  1 2 6 0  2 3 6 0  1470 5 2 7 4 6 
1670 3 6 7 0  2680 1 2 9 0  2890 ~ 
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"[ABLE 1 (continued) 

det/100 Type of aut(O) Universal 
see Table Missing faces ~ and generators edges 

Q25 

220576 

2 

222144 

2 

Q27 

225664 

4 

Q2x 

225808 

4 

228528 

4 

O~ 

228568 

2 

O3t 

231240 

2 

0~2 

233184 

2 

1256 2356 1456 3456 1257 e 
1268 1468 3468 1278 1478 3 1 9 2 4 
3478 3469 3569 3489 4789 ~ 
1250 2560 1270 1780 3490 5 8 6 7 
2590 3590 2790 3790 7890 ~ 

1356 2356 1367 2367 1458 e 
2458 1568 2568 1678 2349 2 1 9 3 8 
2459 2369 2569 2379 4589 ~ 
1370 1470 3670 1480 1580 4 6 5 7 
1780 2490 3790 4790 4890 "4"o-  

3456 1257 2357 3457 1268 Z2 
1468 3468 1278 2378 1478 (1,2)(3,4)(5,6)(7,8) 1 3 2 4 
3478 3459 3469 3579 4689 4 " 4 -  
1270 2570 1280 1680 1290 5 8 6 7 
2590 3590 1690 4690 5690 ~ 

1357 1367 1268 1368 2468 e 
3468 2459 1379 1579 2579 1 4 2 3 
1289 2489 2589 1689 1789 ~ 
2450 3450 1360 2460 3460 5 6 
3570 4570 3670 2480 5790 

2347 2457 1258 1568 2478 Z~ 
2578 1369 3469 3479 3679 (1,2,3)(4,6,5)(7,9,8) 1 4 2 6 
1589 1689 1789 2789 3789 ~ 
2340 1250 2450 1360 3460 3 5 
1560 4560 3470 2580 1690 

2345 2356 2457 2567 1678 e 
5678 1349 2349 2359 2569 2 1 5 
1389 2389 1689 2689 6789 
1340 2340 3450 1470 4570 3 7 4 6 
1670 5670 1480 1780 1890 ~ 

3456 2358 3458 1468 3468 Z2 
1278 2378 1478 3478 2359 (1,2)(3,4)(5,6)(9,0) 3 1 5 
3459 3569 1279 2579 2789 
1460 3460 4560 1270 1670 4 2 6 
1780 1290 2590 1690 5690 

2357 2457 2467 1358 1458 e 
3578 4578 1369 2369 2379 2 1 7 
2479 2679 1389 2389 3589 
1450 1460 2460 4570 4670 3 4 5 6 
1380 1580 1680 1690 2690 ~ 
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TABLE 1 (continued) 

det/100 Type of aut(O) Universal 
see Table Missing faces "~ and generators edges 

Q33 

233352 

4 

034 

233472 

4 

Q3.s 

234976 

4 

O~ 

236704 

4 

O .  

249640 

4 

O~ 

287872 

Q39 

300568 

304288 

1267 1467 3467 3458 1468 e 
3468 1259 1459 1269 1469 1 3 2 4 
1279 2589 3589 4589 4689 ~ 
2350 1270 2370 2570 1670 5 6 
3670 3480 3580 3780 2590 

2357 1467 2467 1567 2567 Z2 
1358 2358 1468 1568 2568 (1,2)(3,4)(5,6)(7,8)(9,0) 1 2 3 6 
2359 2379 2479 2679 3589 ~ 
1460 4670 1380 1480 1580 4 5 7 8 
2390 1490 3490 4790 3890 ~ -Q-'*- 

2367 2567 1348 2348 1458 e 
2458 2368 1568 2568 2378 1 2 3 5 
1459 1569 2569 5679 1489 ~ .4t,..4b 
1340 2370 3470 2670 3480 4 6 
1490 1590 1790 3790 6790 

1346 2346 1456 2456 2347 e 
1457 2457 1368 1469 1569 1 2 3 5 
1579 2579 1589 1689 5789 4...4b 
2340 3460 2370 2570 2380 4 8 6 7 
3680 2780 1890 3890 7890 4...#- -4b-4b 

4567 1238 2348 3478 3478 Z~ 
4578 4678 1239 1259 1569 (1,2,3)(4,6,5)(8,0,9) 1 4 
2579 4579 5679 2389 2589 
1230 1360 3460 1670 4670 2 6 3 5 
5670 1380 3480 1290 1690 4 - 4 -  4.--4b 

1235 1246 1256 1467 1567 e 
2358 2568 3478 3578 4678 1 8 2 7 
5678 2359 1269 1469 4789 -4b-4b -4t--*- 
1250 4670 3580 3780 1290 3 6 4 5 
2390 1490 3490 4790 3890 ~ -4b-4b 

2356 2367 3467 1258 2358 e 
1458 2568 1278 1478 2678 3 1 6 
4678 2369 1479 4679 1589 
1250 2350 3670 1480 1490 2 4 5 7 
3490 1590 3590 3690 4790 ~ 

2346 2456 2347 2457 1368 e 
3468 1568 4568 1578 4578 8 2 1 4 
2349 1579 2579 1689 5789 -4b-4b.4~.4~ 
1360 2360 3460 2470 1580 3 5 6 7 
1390 2390 1790 2790 1890 4 4 -  
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TABLE 1 (continued) 

det/100 Type of aut(Q) Universal 
see Table Missing faces tL~ and generators edges 

Q41 

304512 

Q42 

308224 

~3 

309504 

2345 2346 2357 1458 2458 Z2 
3458 1468 3468 1578 2578 (2,3)(4,5)(6,7)(9,0) 2 1 3 
t678 2359 1469 3469 1789 
2340 1 5 7 0  2570 1 6 8 0  2390 4 7 5 6 
1690 3690 1790 2790 6790 ~ 

1235 1246 1256 2357 2567 Z2 
1468 1 5 6 8  3478 3578 4678 (1,2)(3,4)(5,6)(7,8) 1 7 2 8 
5678 2359 1 4 6 9  3789 4789 ~ 
1250 1 2 6 0  3570 4680 1290 3 6 4 5 
2390 1490 3490 3790 4890 ~ 

1235 1246 1256 2357 2567 Z2 
1468 1 5 6 8  3478 3578 4678 (1,2)(3,4)(5,6)(7,8)(9,0) 1 7 2 8 
5678 2359 1 2 6 9  3579 4789 ~ 
1250 1 4 6 0  4680 3780 1290 3 6 4 5 
2390 1 4 9 0  3490 3790 4890 ~ 

O .  2346 2456 2347 2457 1368 e 
2368 3468 1378 3478 1578 2 1 4 3 5 

310432 4578 2459 1 3 6 9  2369 1789 ~ 
2460 1570 4570 1380 1590 6 7 
2590 1690 2690 5790 1890 

~45 

311616 

2357 3 4 5 7  2367 1467 3467 Z2 
2358 1458 3458 1468 3468 (1,2)(3,4)(5,6)(7,8)(9,0) 1 3 2 4 
2359 1679 2679 4679 1489 ~ 
1460 2370 1 5 8 0  2580 3580 5 6 7 8 
1290 2590 1690 2790 1890 ~ 

O,, 2457 2367 2467 1358 2358 e 
1458 2458 1368 2368 2468 1 2 3 4 

325696 4578 1459 4579 2679 1389 ~ 
1360 2360 2470 1 5 8 0  1390 5 6 
! 590 3690 1 7 9 0  4790 6790 

0,7 2347 1467 3467 1567 2348 e 
2358 1 4 6 8  2468 1568 2568 2 1 3 

313360 4678 1569 1479 3479 2389 
2340 1 6 7 0  1580 2580 2390 4 5 
1590 2590 3590 1 7 9 0  3790 

04, 2345 3456 2457 4567 1368 Z2 
3468 4578 4569 1279 2579 (2,3)(4,5)(6,7)(8,9) 4 1 5 

312320 1689 4689 1 7 8 9  5789 6789 
1230 2340 2350 1360 3460 2 6 3 7 
1270 2570 1280 1390 1890 ~ 
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TABLE 1 (continued) 

det/100 Type of aut(Q) Universal 
see Table Missing faces ~ and generators edges 

O,~ 2356 2456 2357 2457 1368 e 
1468 3568 4568 1378 2378 2 1 5 

330504 3678 2459 1379 2379 1689 
1460 4560 2570  1380 1490 3 4 
2490 4590 1790 2790  1890 

O~, 1356 1367 2367 2467 1358 e 
2458 3458 2378 2478 3578 1 2 

340920 3678 1369 2479 1589 458"9 
i350 1670 2670 2480  1490 
2490 1590 4590 1690 2690 

Q~ 1357 1358 2358 2458 2368 e 
2468 2678 1359 1459 2469 1 2 3 4 

345856 4569 1479 4679  3589 4589 ~ 
2460 t 3 7 0  2370  1670 2670 
4670 1380 2380 1590 1790 

"~ Vertex number 10 is represeted by 0 in Tables 1, 2, 3. 

Third proof: For a universal edge E of Q~, the quotient polytope O~/E should 

be a neighborly 4-polytope with 8 vertices. But for each i between 38 and 51, O~ 

has a universal edge E, such that Q,/Ej is not equivalent to any of the three 

polytopes N~, N~, N~ in [AS, Table 1]. To prove this it suffices to show that the 

determinant  of the "facet-edge-valence matr ix" of Q~/Ei is not one of the 

numbers  0, 1592640 or 1756160 (see [AS, Table 1]). In fact, Q~/E, is the complex 

M described in [GS]. 

The  last two proofs have the advantage that we need not bother how Qi was 

obtained from P. 

4. Realization of 26 cases 

Our goal is to find realizations in R ~ for the 37 remaining cases Q~ . . . . .  (~)37. In 

this section we shall prove that in 26 cases one can realize O~ by adding a suitably 

chosen tenth vertex to any cyclic 6-polytope with 9 vertices. 

Let K be a polytope. A tower ~r in K is a strictly increasing sequence 

4 ~  ~ . . . . .  ~k (k _-> 1) of proper  faces of K. Define: 

= {F: F ~ ~j ,  F is a facet of P}, 1 ~- j ~ k. 
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Define also: 

~¢(P, 9-) = ~, \ ( ~ \ ( " " "  \ ~k) . . .  ). 

Recall the following lemma ([SH2, lemma 4.4]): 

LEMMA 14. There exists a point x that lies exactly beyond ~ = c~(p, if)  (i.e., x 
lies beyond every member of ~ and beneath all the other facets of P). 

PROOF. By induction on the height k of the tower ft. The assertion is 

obviously true for k = 1. Suppose k > 1, and assume the assertion holds for 

k -1 .  Define 9- '= {~2 . . . . .  ~k}. By the induction hypothesis, there is a point x' 

which lies exactly beyond c~, = cO(p, 9-,). Choose a point p in relint qb~ and let 

x = (1 + e ) p - e x ' .  If e is positive and sufficiently small, then x lies exactly 

beyond ~z \ ~',  but ~(P, 9-) = ~-~ \ ~'. • 

We call the construction of Lemma 14 sewing through the tower 9-. We say 

that the polytope O = conv(P U {x}) is obtained at x by sewing P through 9-. 
26 cases 0~ are obtained by sewing P through some tower 3-. The towers are 

listed in Table 2. 

Take, for example, the case Q.~. Here, 9- = {19, 149, 1459, 124589}. 

=q~(P, 9-) = {123459, 123569, 134569, 123679, 145679, 125689, 123789, 

145789, 126789, 156789}. 

The interior 3-faces of A(~) are: 1359 1269 1569 1279 1579 1689. 

The 2-faces of P, not in A(~), are: 246 247 347 257 357 248 348 358 368 468. 

Let Q be the polytope obtained by adding a tenth vertex exactly beyond qg. By 

Lemmas 

1357 

3579 

Here, 
(1 ,7 ,2 ,  

2 and 3, the missing faces of O are: 

1358 1368 1468 2468 1359 1269 2469 1569 1279 2479 1579 2579 

1689 2460 2470 3470 2570 3570 2480 3480 3580 3680 4680. 

as in Table 2, 0 represents the tenth vertex. The permutation 
9, 5, 3, 0) (6, 8) is a combinatorial equivalence between O and 05. 

5. Realization of 2 cases 

Two more cases, O,, and O,s, are obtained from a cyclic 6-polytope P with 9 

vertices by sewing it twice and then omitting a vertex (Table 3). For example, 

start with the polytope 04, as described in Table 1. Q4 is obtained from P by 

sewing (see Table 2). Sew 0~ at the vertex * through the tower {16, 1680, 

156780}. Denote the obtained polytope by K. K is neighborly, as the reader can 

easily check. Now omit the vertex 8, find the missing faces for the resulting 
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TABLE 2 
Sewn polytopes 

Tower in P Permutation 

QI 
O., 
Q, 
O, 
Q, 

Q7 
O, 
QIt) 
Oil 
Ql., 

QI~ 

Q~7 
Q~, 

QI9 
Q.~ 

0.,2 
Q.,.~ 

Q.~4 

Q~ 

Q~ 

O~., 

19 1289 123789 identity 
19 1289 123489 (2, 5, 3, 8, 7, 9, 6, 4, 0) 
19 1459 134569 (1, 5, 0)(2, 7,4, 6) 
19 1289 124589 (1,4,0,2,7,9)(3,8,6) 
19 149 1459 124589 (1,7,2,9,5,3,0)(6,8) 

19 1239 1 2 3 4 5 9  (1,3,8,9,5,6,2,0)(4,7) 
19 139 1342 134569 (1,8,9,6,7,3,5,4)(2,0) 
19 1239 123789 (2, 5, 3, 9, 8, 0)(4, 6) 
19 179 1789 145789 (1,3,2,0)(6,8,7) 
19 179 1789 134789 (1,3,5,2,9,7,6,8,0) 

19 1239 123679 (1,3, 0)(2, 9, 5)(4, 6) 
19 1239 123569 (2,8,9,6,4,7,3,0) 
19 159 1569 156789 (1,7,6,2,5,9,4,8,0) 
19 149 1459 145679 (1,6,4,3,0,2,8,5) 
19 139 1349 134679 (1,3,8,9,5,4,6,7,2,0) 

19 169 1679 123679 (1,5,8,0)(2,9,4)(3,6) 
19 149 1459 145789 (1,5,4,3,9,2,8,0) 
19 1349 134569 (1,5,6,7,2,9,3,0) 
19 1459 1 4 5 6 7 9  (1,2,5,9,8,6,4,0)(3,7) 
19 1459 124589 (1,3, 5, 0) (2, 8, 7)(4, 9, 6) 

19 1459 123459 (1,3, 6, 5, 0)(2, 9, 8, 7) 
19 169 1679 134679 (1,9,3,7,4,5,8,0)(2,6) 
19 159 1569 123569 (1,2,0)(3,5,8,6)(4.7) 
19 1349 134679 (1, 5, 4, 8, 7, 3, O) (2, 9) 
19 1349 1 3 4 7 8 9  (1,5,6,2,8,9,3,0)(4,7) 

19 1459 145789 (1,2, 5, 0)(3, 6)(4, 8, 9, 7) 

TABLE 3 
Two cases 

Is obtained By sewing at And renaming the 
Polytope from * through Omitting vertices by 

O~ 
23456790;) 

04 16, 1680, 156780 8 5 3 1 9 6 4 7 0 

On, 46,4690,246790 0 ( 1 1 2 3 4 5 6 7 8 9 2 )  5 8 4 3 6 7 0 9  
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polytope by the rule of Lemma 4, and rename the vertices according to the 

function 

( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 0 , 2 )  
8 , 5 , 3 , 1 , 9 , 6 , 4 , 7 , 0 ,  " 

The resulting polytope is Q~. 

Each of the 28 polytopes Q~ covered by Tables 2 and 3 has at least one pair of 

adjacent universal edges. The remaining nine spheres have none, and we can 

prove that the techniques of sewing and omitting vertices are not sufficient to 

establish their polytopality. 

6. Realization of the remaining 9 cases 

These cases were decided by the first author, using computational rather than 

combinatorial methods. 
Let Q be one of the 9 remaining types. Now we identity Q with its set of facets 

{F, . . . . .  Fso}, where each facet F~ is a 6-subset of {1 . . . . .  10}. Regard an indexed 

set W = {x~ . . . . .  x,o} of ten points in R 6. Assume that x~ = (xt~ . . . . .  x~.6), i =  

1 . . . . .  10, define xt0 = 1 for i = 1 . . . . .  10 and denote by X the 10 x 7 matrix (xij). 

For a sequence I = (i0 . . . . .  i6) of 7 distinct numbers in {1 . . . . .  10}, denote by X(I) 
the 7 x 7 submatrix (x,~.j), 0 _-__ k, j _<- 6. For each face F = {i~ . . . . .  i6} in Q, consider 

the requirement 

(F) sgdet  X(a, i, . . . . .  i6) = sgdet  X(b, i,,..., i6) # 0 for all a, b ~ {1 . . . . .  10}\F. 

Note that X satisfies (F) if and only if dim(conv W) = 6 and conv{x,: i E F} is a 
facet of conv W. It follows easily that if X satisfies (F) for all F ~ Q, then conv W 

is a realization of Q. Note that all the requirements (F) together determine the 

signs of all determinants that appear in them up to a common reversal of all 

signs. This follows from the connectivity of the incidence graph of facets and 

subfacets of Q. (The common sign reversal corresponds, e.g., to a reflection of 

the points x~ in a hyperplane.) 
Thus we have reduced the realization problem of Q to that of solving a 

suitable system of determinantal (strict) inequalities in the variables xt~ (1 _-__ i <= 

10, 1 =< j _-__ 6). Since the vertices of a neighborly polytope must be in general 

position, we can choose x~ . . . .  , x7 to be the origin and the unit vectors ej . . . . .  e~. 

This reduces the number of variables to 18, and the size of the determinants to 

1 × 1 ,  2 x 2  and 3 x 3 .  

Then we observe that some of our inequalities are implied by the others, due 

to the Pliicker-Grassmann relations for determinants [HP]. This leads to a 
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substantial reduction in the number of inequalities. The realizations listed in 
Table 4 were obtained by solving this reduced system. 

REMARKS. The combinatorial structure of a neighborly polytope determines 

the structure of all its subpolytopes (Lemma 4). This implies that the require- 

ments (F) (F E Q) indirectly determine the signs of all the 7 × 7 subdeterminants 

of X (up to a common sign reversal). 

The first author used the main idea which leads to affine Gale-diagrams, see 

[R1], thus translating the problem of finding 10 points in R 6 with preassigned 

orientations of all 7-tuples to that of finding 10 points in R 2 with preassigned 

orientations of 3-tuples. This reduces our realization problem to a more tractable 
geometric problem in the plane. He solved the planar problem successfully. For 

further details, see [BoSt], [BoSt3], [St]. 

7. Concluding remarks 

(1) Seventeen of the 37 polytopes Q~ have non-trivial combinatorial auto- 

morphisms (see Table 1). The cyclic polytope QI has a symmetric realization, 

i.e., a realization in which all the combinatorial automorphisms are induced by 

isometrics. (Take the convex hull of 10 evenly spaced points on the trigonomet- 
ric moment curve in R6.) In [BEK] an example is given of a simplicial 4-polytope 

with 10 vertices that admits no symmetric realization. The vertices of that 
polytope are necessarily not in general position. It would be interesting to know 
whether our polytopes Q~ do have symmetric realizations. 

(2) Call a simplicial d-polytope P k-stacked if P has a triangulation with no 

additional vertices and no interior cells of dimension less than d - k. A 1-stacked 

polytope is just an ordinary stacked polytope. It is easy to see that a neighborly 
2k-polytope is k-stacked. It can be shown that all the vertex figures of a 

neighborly 2m-polytope with v vertices are (m-1)-s tacked and ( m - 1 ) -  

neighborly (2m - 1)-polytopes with v - 1 vertices. It can also be proved that for 

1 < k = [d/2] there is only one combinatorial type of k-stacked k-neighborly 

d-polytope with d + 3 vertices. Hence, the first interesting family of k-stacked 

k-neighborly d-polytopes is the family of 2-stacked 2-neighborly 5-polytopes 

with 9 vertices. This family includes, e.g., the vertex figures of our 37 polytopes 

O~. Some k-stacked k-neighborly d-polytope can be obtained by "splitting" a 

vertex of a neighborly 2k-polytope (see [AP, section 6] and [MW]). It can be 
shown that if x is a vertex of a neighborly 2m-polytope Q, then the vertex figure 

of Q at x is obtained by "splitting" if and only if x lies on two universal edges of 

Q. It would be interesting to know if there exist 2-stacked 2-neighborly 
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TABLE 4 

Nine cases 

123  

Vertex Coordinates 

O~ 

27 

O2x 

33 

37 

1 0 0 0 0 0 0 

2 1 0 0 0 0 0 

3 0 1 0 0 0 0 

4 0 0 1 0 0 0 

5 0 0 0 1 0 0 

6 0 0 0 0 1 0 

7 0 0 0 0 0 1 

8 0.001 - 0.0009 0.001 1.0005 

9 - 2 - 1.6 2 1.6 

10 2 1 - 1  0.1 

- 0.002 

- 1.5 

- 1 . 1  

0.001 

1 

1 

8 0.01 0.25 - 0.01 0.96 0.03 0.02 

9 1 - 0.5 - 0.5 0.5 - 0.5 0.5 

10 - 0.32 1.29 0.65 0.32 0.033 - 0.003 

8 -0 .165  0.174 -0 .165  0.331 

9 - 0.4 0.5 - 0.2 - 0.5 

10 -0 .164  0.18 - 0 . 2 4 6  -0 .164  

8 0.1408 1.831 0.8592 - 0.5634 

9 4 - 1  1 1 

10 0.8547 0.8547 0.4188 -0 .2735  

8 2 - 2 0  - 1 

9 -0 .172  0.344 0.344 

10 - 0 . 4  - 0 . 2  1 

0.165 

0.6 

0.164 

- 0.2817 

- 3  

- 0.8547 

1 

0.344 

0.4 

- 1  

-0 .172  

- 0 . 0 4  

0.496 

0.2 

0.328 

0.7042 

1 

0.8547 

2.19 

0.344 

0.02 

8 0 . 0 0 0 1  - 0 . 0 0 0 1  0 . 0 0 0 1  - 0 . 0 0 0 1  0 . 0 0 0 1  1 

9 -0 .167  - 0 . 5  0.167 -0 .01  1 0.26 

10 0.5 0.5 - 0 . 7 5  0.8125 -0 .01  0.3025 

8 0.81 -0 .086  -0 .931 0.069 0.672 1.41 

9 1.18 1.18 -0 .235  -0 .706  0.059 0.706 

10 1.32 - 4.6 - 1.68 4.32 2.4 0.24 

- 0.992 

0.249 

1.5 

1 

- 0 . 5  

- 0 . 5  

8 1.32 - 1 0.982 

9 - 0.25 1.25 0.251 

I 0 - 2 1 0.498 

8 - 0 . 2 5 l  - 0 .209  0.0418 0.418 

9 - 0.225 - 0.115 0.,a,49 0.225 

10 - 0.0461 - 0.395 0.132 1.050 

0.836 

0.674 

0.132 

1 

- 0.25 

- 1.5 

0.209 

0.225 

0.263 
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5-polytopes that are not vertex figures of neighborly 6-polytopes. Possible 
candidates would be some of the "vertex figures" of the non-polytopes Q3rQst. 

(3) We would like to draw the reader's attention to the following unexplained 
phenomenon. The determinants det Qi separate the polytopes from the non- 
polytopes: detQi _<-249640 for i_-<37, while detQ~ =>287872 for i >_-38! A 
similar phenomenon was discovered by Altshuler fALl while enumerating the 
2-neighborly combinatorial 3-manifolds with 10 vertices. 
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