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ABSTRACT

There are exactly 37 combinatorial types of neighborly 6-polytopes with 10
vertices. A full description is given.

1. Introduction

A neighborly d-polytope is a d-polytope K (in R*) such that the convex hulil of
any [:d] vertices of K is a face of K. A well-known family of simplicial
neighborly polytopes is the class of cyclic polytopes. (Cf. Griinbaum [GR]
section 4.7, chapter 7 and section 9.6 for the basic facts concerning neighborly
and cyclic polytopes.)

Denote by g(v,d) the number of combinatorial types of neighborly d-
polytopes with v vertices, and by g, (v, d) the number of combinatorial types of
simplicial neighborly d-polytopes with v vertices.

Note that for even d, g, (v, d) = g(v, d). For every d and v > d there is a cyclic
d-polytope with v vertices, hence g, (v, d)=1. Barnette [BR] and the second
author [SH2] proved independently that g, (v, d)— as v —, for any fixed
d=3. Foreven d, g(d+1,d)=g(d+2,d)=g(d+3,d)=1. For odd d =3,
gd+1,d)=g(d+1,d)=g,(d+2,d)=1, and g(d +2,d)=2. Altshuler and
McMullen [AM] computed g, (d + 3, d) for odd d. The first interesting case in
even dimension is d =4, v = 8. Griinbaum [GR, p. 124] showed that g(8,4) > 1
and, in fact, g(8,4) =3 (Griinbaum and Sreedharan [GS]). The second author
showed that

g@m +4,2m)>4(m1+2) [Tei+1

Received September 1, 1986

103



104 J. BOKOWSKI AND 1. SHEMER Isr. J. Math.

(see [SH2)). It is also known that g(9,4) = 23 and g(10,4) = 431 (see {SH1}, [AS],
[AL], [BoSt2]). In this paper we deal with the first non-trivial case in dimension
6, i.e., v =10.

The main result of this paper is:

THEOREM 1. There are exactly 37 combinatorial types of neighborly 6-
polytopes with 10 wvertices.

The problems of enumerating d-polytopes and combinatorial (d — 1)-spheres
are closely related. Although we tried to avoid generating an excessive number
of non-polytopal spheres, we still obtained as a by-product of our computations:

THEOREM 2. There are at least 14 non-polytopal combinatorial types of
3-neighborly simplicial 5-spheres with 10 vertices.

In Section 2 we survey the concepts and results needed for enumerating
neighborly 6-polytopes with 10 vertices. In Section 3 we describe the methods
used in the computation, and we prove that g(10,6) = 37. In Sections 4, 5 and 6
we deal with the realization problem and show that g(10,6)=37.

We use the notation of [GR].

2. Theoretical background

We obtained the polytopes with 10 vertices by adding a tenth vertex to a
polytope with 9 vertices, using the beneath-beyond technique (see Griinbaum
[GR, section 5.2]). We need some results about the connection between the
facial structure of a neighborly polytope and the facial structure of its sub-
polytopes.

Throughout this section, the letter Q denotes a neighborly 2m-polytope, not a
simplex. Since Q is a simplicial polytope, we can identify each proper face of Q
with its set of vertices. Thus, we regard the boundary complex %B(Q) as an
abstract simplicial complex (i.e., a collection of sets, closed under the operation
of taking a subset).

A set M of vertices of Q is a missing face of Q if MZ B(Q) but S € B(Q)
for every ST M.

We denote by #(Q) the set of missing faces of Q. The following Lemma is
trivial (see Altshuler and Perles {AP, section 2}):

LeMMA 1. A subset T of vert Q belongs to B(Q) iff no subset of T belongs to
M(Q). a
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The second author [SH2, theorem 2.4} proved that all missing faces of Q are
of size m + 1. This implies:

LEMMA 2. Let M be a subset of vert Q. M is a missing face of Q iff
IMl=m+1 and M& B(Q).

Choose a vertex x of Q and define: V =vert Q\{x}, P =conv V. For a facet F
of P, we say that x covers F if x lies beyond F with respect to P. Denote by € the
set of facets of P that x covers. Note that x lies beneath all the facets of P not in
€. B(Q) is determined by B(P) and 4, as follows (cf. Griilnbaum [GR, section
5.2)):

LemMMA 3. Let T be a subset of V. T € B(Q) iff P has a facet F which includes
Tand FZ€ €. T U{x} € B(Q) iff P has facets F,, F, which include T, F, € € and
FE¢ ||

The second author proved [SH2, lemma 2.11] that #(Q) and x determine
M(P):

LEMMA 4. Assume MCV, [M|=m+1. Then M € M(P) iff M € M(Q)
and (M\{tH U {x} € M(Q) for some tin M. [ |

Let A be an abstract simplicial complex. A face (i.e., member) F of A is
j-dimensional (or a j-face)if |F|=j+1. Ais a d-complex (or a d-dimensional
complex) if it has a d-face but no (d + 1)-face. A is homogeneous if all its
maximal faces have the same dimension.

For a finite set F we denote the set of all subsets of F by F. For a collection @
of finite sets we denote by A(D) the complex Urco F.

Let & be a collection of facets of a simplicial (d + 1)-polytope P. ¥ generates
a d-dimensional subcomplex A = A(F) of B(P). Define the boundary complex
3A as follows: The maximal faces of 4 A are the subfacets of P that are contained
in exactly one member of % Each F in dA is called a boundary face of A; the
remaining faces of A are its interior faces.

It turns out that ® is an interior face of A iff all facets of P that include ¢
belong to %. This follows, by duality, from the connectivity of the graph of the
face ® dual to ® in the polytope P* dual to P.

Define: A°=A\3A. For —1=j=d, f,(A), f;(d)) and f;,(A°) denote the
number of j-faces of P which belong to A, A and A° respectively.

Define: f(A) = (fo(Q),..., f:(A)). f(3A), f(A°) are defined similarly.

With the f-vector f(A) of A we associate an h-vector h(A)= (h,,..., ho),
defined by:
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h=h@=3 07 ({51 7) @, o0sjsd+l

Now we are ready to discuss the shellability of 4. Several equivalent
definitions of this notion have appeared in the literature ([DK1], [DK2], [BM],

[BL]). We chose the following definition ({BL]):
An abstract simplicial d-complex A is shellable if A is homogeneous, and there

is an ordering F\, F, ..., F,, of its maximal faces such that forevery k,2=k = w,
_ k—1 _ S _
) En(UE)=Uét
j=1 j=1

where 1ss,=d+1, and G¥,..., G are distinct d-subsets of F.
The sequence Fi,...,F, is called a shelling of A.

RemARK: If every (d — 1)-face of A is included in at most two d-faces of A,
then s, is just the number of F’s, j<k, that are adjacent to F, (ie.,
|F,NE|=d). It is known that h;(A)=|{k: 2=k =w, s, =j}|, 1=Sj=d+1.
(See [BL, proposition 2], [MS, section 5.2].)

Condition (*) is equivalent to the following condition, which is handier in
computations:

If1=j<k and |[F.NFE|<d, then F,NF,CF, and |F, NF,|=d for some
I=si<k

A non-empty finite collection F of (d + 1)-sets is shellable if the d-complex
A(%) is shellable.

LEMMA 5. Let & be a collection of facets of a simplicial (d + 1)-polytope.
Assume F,,... F, is a shelling of % Put A= A%). If PEA°, then ®=F, or
&> M, G for some 2=k =w.

ProOF. Assume ® €A° and ® # F,. Then ®C F, for some 2=j=w. Let k
be the last index j such that ® C F,. If ® does not include N, G, then F; hasa
d-subset G that includes @ but not ﬂ?zl G. Clearly, G is not a subset of F; for
j# k, thus G € 44, contradicting our assumption that ® € A°. |

It foliows that, under the assumptions of Lemma 5,

d+1 .
ASEDD (dl—j) h, O=sj=d

i=d—j
ReMaRK. The converse of Lemma 5 is also true.

By the work of Bruggesser and Mani [BM], the set € of facets of P covered by
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x is shellable. Using the methods of Danaraj and Klee [DK1], it is easy to prove
the following lemma:

LEMMA 6. Let ® be a face of P. Assume all the facets of P that include ®, tin
number, are in €. Then € has a shelling F,...,F, ..., F,, such that ®CF, for
Isj=t ]

Define: A =A(¥%). Lemma 3 implies the following:
LemMA 7. link(x; B(Q)) = 9A and ast(x; B(Q)) = B(P)\A°. |

Let H be a hyperplane that strictly separates x from P. The polytope
Q. = QN H is a vertex figure of Q at x. It is well known that the complexes
RB(Q.) and link(x; B(Q)) are isomorphic. Hence f;(dA)=f;(Q,) for 0=j =
2m —2. Therefore

fi (%) = f;(P)— fi(ast(x ; B(Q)))
=f(P)— f,(Q)+ fi-(link(x; B(Q)))
=f(P)-f(Q)+f-(Q.), 0=j=2m-1.

The f-vector f(K) of a simplicial neighborly d-polytope K is a function of d
and |vert K | only. Since Q, is a neighborly (2m — 1)-polytope, it follows that:

LEmMa 8. f(A°), f(34), f(A) and h(d) are functions of | V|{and monly. B
Assume in the sequel that m =3 and | V|=9. Then
£(Q) = (10,45,120,185,150,50), f(P)=(9,36,84,117,90,30),
f(Q.)=19,36,74,75,30).
(See [GR, Table 3, p. 425].) The formulas given above for f;(A°) and h(A) yield:

Lemma 9. f(A%)=(0,0,0,6,15,10), f(A)=(9,36,74,81,45,10) and h(A)=
(1,3,6,0,0,0,0). n

This implies, by Lemma 5 and the Remark preceding it:

LemMmA 10. Let Fy,..., F\, be a shelling of €. Then six facets F, are adjacent

to exactly two members of {F,, ..., F._}, and three facets F, are adjacent to exactly
one member of {F,, ..., F,_\}. The six 3-faces of A° are exactly the intersections
GiNnGi2=k=10,s5=2). [ |

Q has 25 missing faces, since

(140> — £(Q)=210—185 = 25.
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P has 9 missing faces. By Lemmas 2 and 3, the six 3-faces of A° are missing faces
of Q. Therefore Q has 25—9—6 =10 missing faces that contain the vertex x.
Since x is an arbitrary vertex of Q, we conclude that every vertex of Q is
contained in exactly 10 missing faces of Q.

A useful tool for classifying finite combinatorial structures is the edge-valence
matrix (cf. [AS]) defined below.

For every two vertices (not necessarily different) x, y of Q, define:

EV(Q,x,y)=|{M € H#(Q): {x,y}C M}|.

Choose an arbitrary ordering x4, . . ., X, of vert Q. Define an edge-valence matrix
EV(Q)=(a;) by a; =EV(Q, x;, x;), 1=14, j =10.

By the remark above, a; =10 for all i.

The matrix EV(Q) is symmetric. A different ordering of vert Q would yield
another matrix EV(Q), similar to the original one. Thus

LEMMA 11. det EV(Q) is an invariant of the combinatorial type of Q. |

ReMARKS. Lemma 11 remains true if the diagonal entries a; are replaced by
B(EV(Q, x;, x;)) and the non-diagonal entries a; are replaced by y(EV(Q, x,, x;))
where B8 and y are arbitrary real valued functions, defined on the natural
numbers.

The set M (Q) in the definition of EV(Q, x, y) might as well be replaced by the
set of all facets of Q, as in [AS]. Obviously, Lemma 11 holds also for this version
of EV(Q). We shall use this “facet-edge-valence matrix” in step 3 of the
computations below,

An edge ab of Q is universal if for every (m — 1)-subset of vert Q,{a,b}U S €
B(Q) (or, equivalently, {a, b} U S& H(Q)).

LEMMA 12. A neighborly 2m-polytope with 2m +3 or more vertices is cyclic
iff it has a hamiltonian circuit of universal edges.

Proor. See [SH2, theorem 3.5]. |

An edge ab of Q is universal ift EV(Q, a, b) = 0. Therefore one can easily see
from EV(Q) if Q is cyclic or not.

3. Computations

From here on P denotes a cyclic 6-polytope with 9 vertices. Denote the
vertices of P by 1,2,...,9, with the cyclic order 1,2,...,9,1.
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The facets of P are:

123456 123467 124567 234567 123478
124578 234578 125678 235678 345678
123459 123569 134569 123679 134679
145679 123489 124589 234589 125689
235689 345689 123789 134789 145789
126789 236789 346789 156789 456789

The missing faces of P are:
1357 1358 1368 1468 2468 2469 2479 2579 3579

Step 1. In this step we found all collections € of 10 facets of P which satisfy
the following conditions:

(1) € has a shelling F,, ..., F.

(2) Six facets F, are adjacent to exactly two members of {F,,..., F,_,} and
three facets F, are adjacent to exactly one member of {F,,..., F,_.}.

(3) For every interior 3-face ® of A(€), 4 has a shelling Fi,. .., Fy, such that
GCF for1=j=t where t=|{FE€%: FO®}|.

By Lemmas 6 and 10, these conditions are necessary for € to be a “covered
cap”.

In step 2 we associated with each collection € a complex (see (**) below),
which may (or may not) be isomorphic to the boundary complex of a neighborly
6-polytope with 10 vertices.

If an automorphism ¢ of P maps €, onto 4., then the corresponding
complexes are, clearly, isomorphic by the mapping i — ¢(i) for 1 =i =9 and
10— 10. Hence it suffices to take a representative of each equivalence class of
collections €.

It seems worthwhile to describe, in some detail, our algorithm for finding all
those collections €.

Under the automorphism group aut P of P there are 9 equivalence classes of
3-faces of P, with representatives @, ..., ®,:

1234 1245 1256 1236 1247 1346 1246 1235 1458

We divided the collections € into 9 classes as follows: € belongs to class i
(1 =i =9)if the complex A(€) has an interior 3-face equivalent (under aut P) to
®;, but has no interior 3-face equivalent to ®; (1=j <i).

Call a collection € of class i special if ®; itself is an interior face of A(%6).
Clearly every collection of class i is equivalent under aut P to a special one.
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To generate the special collections of class 1, consider ®,. ®, is included in 5
facets F,,...,F; of P:

123456 123467 123478 123489 123459.

Note that F,,..., F; is a shelling, and the sequence (s-, 53, 54, 85) is (1,1,1,2).
We extended the shelling F,, ..., Fs by a backtrack algorithm (see Danaraj and
Klee [DK2]), in all possible ways, to a shelling F,..., F\, with the restriction
that s, =2 for 6 = k = 10. This procedure clearly yields all the special collections
€ of class 1.

To generate the special collections of class 2 we started with the facets
F,, ..., Fs that include ®.:

123456 124567 124578 124589 123459.

As before, we extended F,..., Fs to a shelling Fi,..., Fi, with 5, =2 for
6=k =10.

Assume the facet F is a candidate for being chosen as Fy, for some 6 = k =10;
thatis, F N (U!Z F)=G,U G, where G,, G: are two distinct 5-subsets of F. If
the 3-face ® = G, N G, is equivalent to ®,, then F is ruled out, since the choice
F, = F would lead to a collection € of class 1.

In the same manner we generated the special collections of class i, i =3,...,9,
ruling out interior 3-faces that are equivalent to ®; for some j <i.

We obtained altogether 371 non-equivalent collections 6, as follows:

Class 1 2 3 4 5 6 7 8 9

Number of collections 45 75 79 8 8 1 0 0 0

Since we did not check whether condition (3) holds for each interior 3-face of
A(%), it is conceivable that some of the 371 collections obtained fail to satisfy
condition (3).

Step 2. For every collection € found in Step 1 we constructed the complex
(%) B(Q)=(B(P)\A(E)Y)U{FU{10}: FEJA(E).

Note that if € is a “‘covered cap”, i.e., if € is the set of facets of P covered by
some point x (for some realization of P), then B(Q) is just the boundary
complex of the polytope Q = conv(P U {x}) with x replaced by 10. (See Lemma
7.) If € is not a “‘covered cap”, then B(Q) is still a (triangulation of a) S-sphere.
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This follows from the shellability of €. We omit the details, since we shall never
use this fact, except in the statement of Theorem 2. For each complex B(Q) we
calculated its set of missing faces, denoted by #(Q). As expected, all the missing
faces found were of size 4.

Then we sorted the complexes B(Q) according to the determinant det(Q) =
det EV(Q).

1f det(Q) # det(Q’), then B(Q) and B(Q’) are not isomorphic. We checked
and found that B(Q) and $B(Q') were isomorphic whenever det(Q) = det(Q").

We obtained 51 equivalence classes of spheres. These are listed in Table 1, in
terms of their missing faces, in increasing order of their determinant. The vertex
number 10 is represented as 0 in Tables 1, 2, 3.

The complexes listed in Table 1 were obtained from the complexes %B(Q)
described above by renaming the vertices. After renaming, each equivalence
class of vert Q; with respect to aut Q; became a set of consecutive numbers.

Step 3. In this step we proved, in three ways, that 14 spheres are not
polytopal.

Let QO be one of the 51 spheres listed in Table 1, and let x be a vertex of Q. We
say that Q is obtained at x if there is a sphere Q' among the 371 spheres
considered in step 2, and a combinatorial equivalence ¢ from $B(Q’) onto
B(Q), such that x = ¢(10).

Note that if Q is a neighborly 6-polytope with 10 vertices, and x € vert Q, then
conv(vert Q\{x}) is cyclic, i.e., combinatorially equivalent to P.

Since we have chosen all possible “covered caps” %, up to equivalence under
aut P, we have:

LeEmMA 13. A polytopal sphere is obtained at all its vertices. ]

14 spheres in our list (Qx—Qs) were not obtained at all their vertices, thus
establishing:

g(10,6)=37.

Now we show two additional proofs of the non-polytopality of Q:.—Qs,.
Suppose Q; is a polytope.

Second proof: For a vertex x of Q,, find the missing faces of the subpolytope
Q. (x) = conv(vert Q;\{x}) according to the rule of Lemma 4. Since Q;(x) is
combinatorially equivalent to P, we should obtain 9 missing faces, for every
choice of x. But in each of the cases 38 = i =51 we obtained 11 missing faces, for
at least one choice of x.
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TABLE 1
Representatives of classes

det/100 Type of aut(Q) Universal
see Table Missing faces'” and generators edges
Q 1357 1358 1368 1468 2468 D

1359 1369 1469 2469 1379 12345
125000 1479 2479 1579 2579 3579 (1.2,3.4,5,6,7,8,9,0)

2460 2470 2570 3570 2480 (1,9)(2,8)(3.7)(4.6)
2 2580 3580 3680 3680 4680
0: 2357 2457 1368 1468 1378 Z.

2378 1478 2478 2359 1369 762158
165000 3569 2579 1389 2389 3689 (1,2)(3,4)(5,6)(7.8)(9.0) -e—e—e—0—0—0-

2450 1460 4560 1470 2470 9430
2 4570 1680 2590 1690 5690 00—
O: 1267 1467 1238 2358 1268 e

2568 2678 2359 3459 2579 § 420
174720 4579 2679 4679 2589 3589 000

1340 3450 1460 1470 1670 637 9135
pl 1380 3580 1680 3490 4790 o -0
Q. 2367 1348 1458 2368 3468 e

2568 4568 2678 1459 1579 74216
176520 2579 2679 1589 2589 4589 ~——0—0—0-

1340 1450 2360 3460 1370 935 80
2 23700 3670 1490 1790 2790 -0 -0
Qs 2357 1468 3578 4678 5678 Z,

1239 1249 2359 2459 1469 517 628
187392 2579 1489 4589 4689 5789 (1,2)(3,4)(5,6)(7.8)(9,0) -e—e—e -0—0—o

1230 1240 2350 1360 1460 34 990
2 2370 3570 3670 1680 6780 > -
Q. 2357 1457 2457 1368 2368 Z.

1468 1378 2378 1478 2478 12 34
194112 2359 2369 2379 2579 3689 (1,2)(3,4)(5,6)(7.8)(9,0) ~e—e- -e—e-

1450 1460 4570 1480 1680 58 67
4 2590 4590 1690 3690 5690 - -
O, 3456 2357 3457 3567 1468 Z,

3468 4568 2359 3569 1279 0315
197960 2379 1289 2389 1689 3689 (1,2)(3,4)(5,6)(7,8)(9.0) -e—e—e—e-

1460 4560 1270 1470 2570 9426 78
2 4570 1280 1480 2790 1890 -0 -0
(0N 2345 3456 2457 3458 1368 Z,

3468 2459 1279 2579 4589 415
199680 1689 4689 1789 5789 6789 (2,3)(4,5)(6,7)(8,9) “—0—o-

1230 2340 2350 1360 3460 628 739
2 1270 2570 1670 1680 1790 -0 0o



Vol. 58, 1987 POLYTOPES

TABLE 1 (continued)
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det/100 Type of aut(Q) Universal
see Table Missing faces and generators edges
Q. 2345 3456 2457 4567 1368 D,

3568 4568 1279 2479 4579 415
204800 1689 5689 1789 4789 6789 (1,2,3)(4,6,9)(5,8,7) ->—0—0-

1230 2340 2350 1360 3560 (1,2)(4,8)(5.6)(7,9) 937 628
3 1270 2470 1380 1290 1890 09 000
Qu 2456 2357 2567 1468 4568 Z.+ Z,

1378 3578 1678 5678 2359 8215

205000 2459 2569 1379 2379 3789 (1,2)(3,4)(5,8)(6,7)(9,0) -e—e—e—e-
1460 2460 4560 1380 1480 (1,3)(2,4)(5,6)(7.8)(9,0) 7 4 3 6

2 1780 1390 2390 1490 2490 AP
(o} 1256 2356 1456 1257 2357 Z

1268 1468 1278 2378 1478 319 67
206336 3478 2359 2569 2379 3789 (1,2)(3,4)(5.6)(7,8)(9,0) -—e—e -e—e-

1460 1560 1480 4780 3490 420 58
2 3500 4690 5690 3790 4890 oo oo
O 1256 2356 1456 2357 2567 Z,

1468 1568 1269 1469 2379 (1,2)(3,4)(5.6)(7,8)(0,0) 3 1 7 59
206448 3479 2679 4679 1489 4789 oo oo

1250 2350 2370 1480 3480 428 60
2 1580 3580 3780 3790 4890 oo oo
O 3456 2357 3457 3567 2358 e

3458 1468 3468 1469 4569 51309
206600 1279 2579 1679 5679 4689 o

1270 2370 2570 1280 2380 426 78
2 1480 3480 1290 1690 1890 oo oo
Ou 1356 1456 1367 1467 2358 e

3568 2378 2478 3678 4678 6218
207240 1469 1569 1479 2479 4789 S .

1350 2350 3560 2380 2780 439 57
2 1490 2490 1590 2590 2890 oo oo
Qs 2357 3457 1467 3467 3567 Z,

2358 3458 1468 3466 4568 (1,2)(3,4)(5,6)(7,8)(9,0) 3 1 5
207368 2359 1289 1480 2589 4589

1460 1270 2370 1670 3670 426 78
3 1200 2590 1690 2790 1890 oo oo
Qu 2347 2457 3467 4567 1258 Z,

2458 1568 4568 2478 1369 (1,2,3)(4,6,5)(7,9,8) 4 17
209088 3469 1569 4569 3679 1589

1230 2370 3470 1280 2580 629 538
2 2780 1390 1690 3790 1890 oo oo
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TABLE 1 (continued)

det/100 Type of aut(Q) Universal
see Table Missing faces" and generators edges
On 2345 3456 2347 2348 3458 e

1278 2378 1569 4569 3489 314 57
209568 1680 4689 1789 3789 6789 —0-o- oo

1250 2350 2450 1560 4560 629 80
2 1270 2370 1670 1690 1790 --0—0- -0—o
Oun 2345 3456 1248 2348 2458 e

1278 3459 3569 3579 1679 315 29
212272 3679 1480 3489 1789 3789 ——o -

1240 2450 1260 2560 3560 47 6 8
2 1670 5670 1280 1780 6790 -—o- -—o-
Quw 2457 1368 4578 1678 4678 e

5678 1239 2349 2459 1369 415
213208 1279 2479 13890 1789 4789 -—o—o-

1230 2350 2450 1360 3560 628 37
2 4560 4570 1680 5680 2390 o -0
Qs 2456 2458 1368 2368 2568 e

1378 2378 1478 2478 2578 215 34
215800 2459 1379 1479 2479 4579 -8 -

1360 2560 3560 1370 3680 6 7 89
2 1390 1490 4590 1690 5690 -—o- >
Qx 2356 3567 3568 1478 3578 e

4578 1249 2349 2359 1269 315
217032 2369 1479 3479 3579 4789 -—0—o-

1240 1260 2360 2560 1480 728 4 6
2 1680 5680 1780 5780 1490 -—0—0 -0—o-
Q2 1467 2467 2348 2358 2458 e

2468 2378 2678 1359 1379 218 36
217408 2379 1679 2679 3589 3789 —0-¢ -

1350 1450 1460 2460 4560 49 57
2 3580 4580 1590 1690 1790 -—o- -0
Oz 2356 1457 3457 3467 3567 e

2368 3468 3678 1479 3479 316
216624 1289 1489 2689 4689 4789 —0—o-

1250 2350 2560 1570 3570 427 58
2 1280 2680 1290 1490 1590 -—0—0- -0
Qa4 1457 3457 1567 3567 2368 e

3578 3678 1249 1459 4579 318
220128 2389 2489 3589 4589 3689 -—0—0-

1240 1450 1260 2360 1470 527 46
2 1670 3670 2680 1290 2890 -0 -8
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TaBLE 1 (continued)

det/100 Type of aut(Q) Universal
see Table Missing faces'"” and generators edges
Qs 1256 2356 1456 3456 1257 e
1268 1468 3468 1278 1478 319 2 4
220576 3478 3469 3569 3489 4789 00 -0
1250 2560 1270 1780 3490 58 6 7
2 2590 3590 2790 3790 7890 -—o- -—o-
Qx 1356 2356 1367 2367 1458 e
2458 1568 2568 1678 2349 219 38
222144 2459 2369 2569 2379 4589 -0 -—o-
1370 1470 3670 1480 1580 46 57
2 1780 2490 3790 4790 4890 -—0- -—0-
(0 3456 1257 2357 3457 1268 Z,
1468 3468 1278 2378 1478 (1,2)(3,4)(5,6)(7.8) 13 2 4
225664 3478 3459 3469 3579 4689 -0 -0
1270 2570 1280 1680 1290 58 6 7
4 2590 3590 1690 4690 5690 o -
Qo 1357 1367 1268 1368 2468 e
3468 2459 1379 1579 2579 1 4 23
225808 1289 2489 2589 1689 1789 --—o- -0—o-
2450 3450 1360 2460 3460 56
4 3570 4570 3670 2480 5790 --—o-
(08 2347 2457 1258 1568 2478 Z,
2578 1369 3469 3479 3679 (1,2,3)(4,6,5)(7,9,8) 1 4 26
228528 1589 1689 1789 2789 3789 -0 -0—0-
2340 1250 2450 1360 3460 35
4 1560 4560 3470 2580 1690 -—o-
Qs 2345 2356 2457 2567 1678 e
5678 1349 2349 2359 2569 215
228568 1389 2389 1689 2689 6789 --—0—0-
1340 2340 3450 1470 4570 37 4 6
2 1670 5670 1480 1780 1890 --—0- -0—0-
O 3456 2358 3458 1468 3468 Z,
1278 2378 1478 3478 2359 (1,2)(3,4)(5,6)(9,0) 315
231240 3459 3569 1279 2579 2789 -—0—0-
1460 3460 4560 1270 1670 426
2 1780 1290 2590 1690 5690 -—0-0-
Qs 2357 2457 2467 1358 1458 e
3578 4578 1369 2369 2379 217
233184 2479 2679 1389 2389 3589 00~
1450 1460 2460 4570 4670 34 56

2 1380 1580 1680 1690 2690 o -
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TABLE 1 (continued)
det/100 Type of aut(Q) Universal
see Table Missing faces"” and generators edges
Qs 1267 1467 3467 3458 1468 e
3468 1259 1459 1269 1469 13 24
233352 1279 2589 3589 4589 4689 o -
2350 1270 2370 2570 1670 56
4 3670 3480 3580 3780 2590 “—o-
O 2357 1467 2467 1567 2567 Z.
1358 2358 1468 1568 2568 (1,2)(3,4)(5,6)(7.8)(9.0) 1 2 3 6
233472 2359 2379 2479 2679 3589 o -0
1460 4670 1380 1480 1580 45 78
4 2390 1490 3490 4790 3890 o -0
Qs 2367 2567 1348 2348 1458 e
2458 2368 1568 2568 2378 12 35
234976 1459 1569 2569 5679 1489 e -0
1340 2370 3470 2670 3480 46
4 1490 1590 1790 3790 6790 -
Qs 1346 2346 1456 2456 2347 e
1457 2457 1368 1469 1569 12 35
236704 1579 2579 1589 1689 5789 o -0
2340 3460 2370 2570 2380 48 67
4 3680 2780 1890 3890 7890 o -0
0% 4567 1238 2348 3478 3478 Z,
4578 4678 1239 1259 1569 (1,2,3)(4,6,5)(8,0,9) 1 4
249640 2579 4579 5679 2389 2589
1230 1360 3460 1670 4670 26 35
4 5670 1380 3480 1290 1690 - -0
Qx 2346 2456 2347 2457 1368 e
3468 1568 4568 1578 4578 8214
287872 2349 1579 2579 1689 5789 -—0—0—o0-
1360 2360 3460 2470 1580 35 67
1390 2390 1790 2790 1890 -0 -0
Qs 2356 2367 3467 1258 2358 e
1458 2568 1278 1478 2678 316
300568 4678 2369 1479 4679 1589
1250 2350 3670 1480 1490 24 57
3490 1590 3590 3690 4790 e -0
Qu 1235 1246 1256 1467 1567 e
2358 2568 3478 3578 4678 18 27
304288 5678 2359 1269 1469 4789 s -
1250 4670 3580 3780 1290 36 45
2390 1490 3490 4790 3890 e -0
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TABLE 1 (continued)

det/100 Type of aut(Q) Universal
see Table Missing faces®’ and generators edges
Q. 2345 2346 2357 1458 2458 Z,

3458 1468 3468 1578 2578 (2,3)(4,5)(6,7)(9,0) 213
304512 1678 2359 1469 3469 1789 -—0—0-

2340 1570 2570 1680 2390 4 17 56

1690 3690 1790 2790 6790 ~—o -
Q.. 1235 1246 1256 2357 2567 Z,

1468 1568 3478 3578 4678 (1,2)(3.4)(5,6)(7,8) 17 28
308224 5678 2359 1469 3789 4789 - -0

1250 1260 3570 4680 1290 36 45

2390 1490 3490 3790 4890 -0 -0

Qs 1235 1246 1256 2357 2567 Z:.
1468 1568 3478 3578 4678 (1,2)(3,4)(5,6)(7,8)(9,0) 1 7 2 8

309504 5678 2359 1269 3579 4789 -9 -o—o

1250 1460 4680 3780 1290 36 45

2390 1490 3490 3790 4890 e -0
Q. 2346 2456 2347 2457 1368 e

2368 3468 1378 3478 1578 214 35
310432 4578 2459 1369 2369 1789 -8 -0

2460 1570 4570 1380 1590 6 7

2590 1690 2690 579 189G e
Qs 2357 3457 2367 1467 3467 Z;

2358 1458 3458 1468 3468 (1,2)(3,4)(5,6)(7,8)(9,0) 1 3 2 4
311616 2359 1679 2679 4679 1489 <o -0

1460 2370 1580 2580 3580 56 78

1200 2590 1690 2790 1890 e o
Qs 2345 3456 2457 4567 1368 Z;

3468 4578 4569 1279 2579 (2,3)(4,5)(6,7)(8,9) 415
312320 1689 4689 1789 5789 6789 -0

1230 2340 2350 1360 3460 26 37

1270 2570 1280 1390 1890 o -0
Qa 2347 1467 3467 1567 2348 e

2358 1468 2468 1568 2568 213
313360 4678 1569 1479 3479 2389 00

2340 1670 1580 2580 2390 45

1590 2590 3590 1790 3790 -—o-
Qu 2457 2367 2467 1358 2358 e

1458 2458 1368 2368 2468 12 34
325696 4578 1459 4579 2679 1389 o -

1360 2360 2470 1580 1390 56

1590 3690 1790 4790 6790 -—o-
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TABLE 1 (continued)

det/100 Type of aut(Q) Universal
see Table Missing faces” and generators edges
Q. 2356 2456 2357 2457 1368 e

1468 3568 4568 1378 2378 215
330504 3678 2459 1379 2379 1689 ——o-

1460 4560 2570 1380 1490 34

2490 4590 1790 2790 1890 -—o-
Qs 1356 1367 2367 2467 1358 e

2458 3458 2378 2478 3578 12
340920 3678 1369 2479 1589 4589 -

1350 1670 2670 2480 1490

2490 1590 4590 1690 2690
Qs 1357 1358 2358 2458 2368 e

2468 2678 1359 1459 2469 12 34
345856 4569 1479 4679 3589 4589 e -

2460 1370 2370 1670 2670
4670 1380 2380 1590 1790

" Vertex number 10 is represeted by 0 in Tables 1, 2, 3.

Third proof : For a universal edge E of Q,, the quotient polytope Q;/E should
be a neighborly 4-polytope with 8 vertices. But for each i between 38 and 51, O,
has a universal edge E; such that Q,/E; is not equivalent to any of the three
polytopes N7i, N5, N3 in [AS, Table 1]. To prove this it suffices to show that the
determinant of the “facet-edge-valence matrix” of Q,/E; is not one of the
numbers 0, 1592640 or 1756160 (see [AS, Table 1}). In fact, Q,/E, is the complex
M described in [GS].

The last two proofs have the advantage that we need not bother how Q; was
obtained from P.

4. Realization of 26 cases

Our goal is to find realizations in R* for the 37 remaining cases Q,, ..., Qy. In
this section we shall prove that in 26 cases one can realize Q; by adding a suitably
chosen tenth vertex to any cyclic 6-polytope with 9 vertices.

Let K be a polytope. A tower J in K is a strictly increasing sequence
¢#D,...,0, (k=1) of proper faces of K. Define:

9, ={F: FD®,, Fis afacet of P}, 1=sj=k
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Define also:
CP,.T)y=F\NF\NC\F)...)
Recall the following lemma ([SH2, lemma 4.4]):

LEMMA 14. There exists a point x that lies exactly beyond € = €(P, J) (i.e., x
lies beyond every member of 6 and beneath all the other facets of P).

Proor. By induction on the height k of the tower J. The assertion is
obviously true for k =1. Suppose k >1, and assume the assertion holds for
k —1. Define 7' = {®.,...,®D,}. By the induction hypothesis, there is a point x’
which lies exactly beyond €' = (P, J'). Choose a point p in relint ®, and let
x=(+¢e)p—ex'. If ¢ is positive and sufficiently small, then x lies exactly
beyond F\ €', but €(P,T)= F\ € . n

We call the construction of Lemma 14 sewing through the tower J. We say
that the polytope Q =conv(P U {x}) is obtained at x by sewing P through J.

26 cases Q, are obtained by sewing P through some tower 7. The towers are
listed in Table 2.

Take, for example, the case Q. Here, J ={19, 149, 1459, 124589},

€ =€(P,T)=1{123459, 123569, 134569, 123679, 145679, 125689, 123789,
145789, 126789, 156789}.

The interior 3-faces of A(€) are: 1359 1269 1569 1279 1579 1689.

The 2-faces of P, not in A(€), are: 246 247 347 257 357 248 348 358 368 468.

Let Q be the polytope obtained by adding a tenth vertex exactly beyond €. By
Lemmas 2 and 3, the missing faces of Q are:

1357 1358 1368 1468 2468 1359 1269 2469 1569 1279 2479 1579 2579
3579 1689 2460 2470 3470 2570 3570 2480 3480 3580 3680 4680.

Here, as in Table 2, 0 represents the tenth vertex. The permutation
(1,7,2,9,5, 3, 0) (6, 8) is a combinatorial equivalence between Q and Q.

5. Realization of 2 cases

Two more cases, Q, and Qs, are obtained from a cyclic 6-polytope P with 9
vertices by sewing it twice and then omitting a vertex (Table 3). For example,
start with the polytope Q,, as described in Table 1. Q, is obtained from P by
sewing (see Table 2). Sew Q, at the vertex * through the tower {16, 1680,
156780}. Denote the obtained polytope by K. K is neighborly, as the reader can
easily check. Now omit the vertex 8, find the missing faces for the resulting
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TABLE 2
Sewn polytopes
Tower in P Permutation
Q 19 1289 123789 identity
Q: 19 1289 123489 (2,5,3,8,7,9,6,4,0)
Q: 19 1459 134569 (1,5,0)(2,7,4,6)
Q. 19 1289 124589 (1,4,0,2,7,9)(3,8,6)
Qs 19 149 1459 124589 (1,7,2,9,5,3,0)(6,8)
Q; 19 1239 123459 (1,3,8,9,5,6,2,0)4,7)
Q: 19 139 1342 134569 (1,8,9,6,7,3,5,4)(2,0)
Qo 19 1239 123789 2,5,3,9,8,0)(4,6)
Qu 19 179 1789 145789 (1,3,2,0)(6,8,7)
Qi 19 179 1789 134789 (1,3,5,2,9,7,6,8,0)
Qs 19 1239 123679 (1,3,0)(2,9,5)(4,6)
Qun 19 1239 123569 (2,8,9,6,4,7,3,0)
Qs 19 159 1569 156789 (1,7,6,2,5,9,4,8,0)
Qv 19 149 1459 145679 (1,6,4,3,0,2,8,5)
Qi 19 139 1349 134679 (1,3,8,9,5,4,6,7,2,0)
Qw 19 169 1679 123679 (1,5,8,0)(2,9,4)(3.6)
Qx 19 149 1459 145789 (1,5,4,3,9,2,8,0)
Qz 19 1349 134569 (1,5,6,7,2,9,3,0)
(0)% 19 1459 145679 (1,2,5,9,8,6,4,003,7)
Qs 19 1459 124589 (1,3,5,0)(2,8,7)(4,9,6)
Q:. 19 1459 123459 (1,3,6,5,002,9,8,7)
Q:s 19 169 1679 134679 (1,9,3,7,4,5,8,0)(2,6)
Quw 19 159 1569 123569 (1,2,0)(3,5,8,6){4,7)
Qs 19 1349 134679 (1,5,4,8,7,3,0)(2,9)
o 19 1349 134789 (1,5,6,2,8,9,3,0)4,7)
Q- 19 1459 145789 (1,2,5,0)(3,6)(4,8,9,7)
TABLE 3
Two cases
Is obtained By sewing at And renaming the
Polytope from * through Onmitting vertices by
123456790
Qs Q. 16, 1680, 156780 8 (8 53196470 2)
123456789«
Qu Qu 46, 4690, 246790 0 (1234567855
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polytope by the rule of Lemma 4, and rename the vertices according to the
function

The resulting polytope is Q..

Each of the 28 polytopes Q; covered by Tables 2 and 3 has at least one pair of
adjacent universal edges. The remaining nine spheres have none, and we can
prove that the techniques of sewing and omitting vertices are not sufficient to
establish their polytopality.

6. Realization of the remaining 9 cases

These cases were decided by the first author, using computational rather than
combinatorial methods.

Let Q be one of the 9 remaining types. Now we identity Q with its set of facets
{F,,..., Fx}, where each facet F;, is a 6-subset of {1,...,10}. Regard an indexed
set W={x,,...,x,} of ten points in R*. Assume that x; =(x;,,...,Xis), i =
1,...,10, define x,o0=1for i =1,...,10 and denote by X the 10 X 7 matrix (x;).
For a sequence I = (io, . . ., is) of 7 distinct numbers in {1, .. ., 10}, denote by X(I)
the 7 X 7 submatrix (x,,;), 0= k, j = 6. For each face F ={i,, ..., is} in Q, consider
the requirement

(F) sgdet X(a,iy,...,is)=sgdet X(b,i\,...,is)#0 forall a,b€{l,...,10}\F.

Note that X satisfies (F) if and only if dim(conv W) =6 and conv{x;: i € F}isa
facet of conv W. It follows easily that if X satisfies (F) for all F € Q, then conv W
is a realization of Q. Note that all the requirements (F) together determine the
signs of all determinants that appear in them up to a common reversal of all
signs. This follows from the connectivity of the incidence graph of facets and
subfacets of Q. (The common sign reversal corresponds, e.g., to a reflection of
the points x; in a hyperplane.)

Thus we have reduced the realization problem of Q to that of solving a
suitable system of determinantal (strict) inequalities in the variables x;; (1=i =
10, 1=j =6). Since the vertices of a neighborly polytope must be in general
position, we can choose x,, ..., X, to be the origin and the unit vectors e, .. ., é.
This reduces the number of variables to 18, and the size of the determinants to
1x1,2X%2 and 3X%3.

Then we observe that some of our inequalities are implied by the others, due
to the Pliicker-Grassmann relations for determinants [HP]. This leads to a
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substantial reduction in the number of inequalities. The realizations listed in
Table 4 were obtained by solving this reduced system.

ReEMARKS. The combinatorial structure of a neighborly polytope determines
the structure of all its subpolytopes (Lemma 4). This implies that the require-
ments (F) (F € Q) indirectly determine the signs of all the 7 X 7 subdeterminants
of X (up to a common sign reversal).

The first author used the main idea which leads to affine Gale-diagrams, see
[R1], thus translating the problem of finding 10 points in R® with preassigned
orientations of all 7-tuples to that of finding 10 points in R* with preassigned
orientations of 3-tuples. This reduces our realization problem to a more tractable
geometric problem in the plane. He solved the planar problem successfully. For
further details, see [BoSt], [BoSt3], [St].

7. Concluding remarks

(1) Seventeen of the 37 polytopes Q, have non-trivial combinatorial auto-
morphisms (see Table 1). The cyclic polytope Q, has a symmetric realization,
i.e., a realization in which all the combinatorial automorphisms are induced by
isometries. {Take the convex hull of 10 evenly spaced points on the trigonomet-
ric moment curve in R®.) In [BEK] an example is given of a simplicial 4-polytope
with 10 vertices that admits no symmetric realization. The vertices of that
polytope are necessarily not in general position. It would be interesting to know
whether our polytopes Q; do have symmetric realizations.

(2) Call a simplicial d-polytope P k-stacked if P has a triangulation with no
additional vertices and no interior cells of dimension less than d — k. A 1-stacked
polytope is just an ordinary stacked polytope. It is easy to see that a neighborly
2k-polytope is k-stacked. It can be shown that all the vertex figures of a
neighborly 2m-polytope with v vertices are (m —1)-stacked and (m —1)-
neighborly (2m — 1)-polytopes with v — 1 vertices. It can also be proved that for
1=k =[d/2] there is only one combinatorial type of k-stacked k-neighborly
d-polytope with d +3 vertices. Hence, the first interesting family of k-stacked
k-neighborly d-polytopes is the family of 2-stacked 2-neighborly 5-polytopes
with 9 vertices. This family includes, e.g., the vertex figures of our 37 polytopes
Q.. Some k-stacked k-neighborly d-polytope can be obtained by “splitting” a
vertex of a neighborly 2k-polytope (see [AP, section 6] and [MW]). It can be
shown that if x is a vertex of a neighborly 2m-polytope Q, then the vertex figure
of Q at x is obtained by “splitting” if and only if x lies on two universal edges of
Q. It would be interesting to know if there exist 2-stacked 2-neighborly



Vol. 58, 1987 POLYTOPES 123

TABLE 4
Nine cases
Vertex Coordinates

1 0 0 0 0 0 0

2 i 0 0 0 0 0

3 0 i 0 0 0 0

4 0 0 1 0 0 0

5 0 0 0 1 0 0

6 0 0 0 0 1 0

7 4] 0 0 0 0 1

8 0.001 —0.0009 0.001 1.0005 -0.002 0.001
Q. 9 -2 -16 2 1.6 -1.5 1

10 2 1 -1 0.1 -1.1 1

8 0.01 0.25 -0.01 0.96 0.03 0.02
On 9 1 -0.5 -0.5 0.5 -0.5 0.5

10 -0.32 1.29 0.65 0.32 0.033 -0.003

8 —0.165 0.174 —0.165 0.331 0.165 0.496
Qux 9 -0.4 0.5 ~0.2 -0.5 0.6 0.2

10 —0.164 0.18 —-0.246 —0.164 0.164 0.328

8 0.1408 1.831 0.8592 —0.5634 —0.2817 0.7042
Qx 9 4 -1 1 1 -3 1

10 0.8547 0.8547 0.4188 —02735 -—0.8547 0.8547

8 2 -20 -1 -1 1 2.19
Qs 9 -0.172 0.344 0.344 —-0.172 0.344 0.344

10 -04 -0.2 1 -0.04 0.4 0.02

8 0.0001 -—-0.0001 0.0001  —0.0001 0.0001 1
Qs 9 -0.167 -05 0.167 -0.01 1 0.26

10 0.5 0.5 -0.75 0.8125 -0.01 0.3025

8 0.81 -0.086 —0.931 0.069 0.672 141
Qss. 9 1.18 1.18 -0.235 -0.706 0.059 0.706

10 1.32 —-4.6 —1.68 432 24 0.24

8 1.32 -1 0.982 1 -0.992 1
Qx 9 -0.25 1.25 0.251 -05 0.249 -0.25

10 -2 1 0.498 -0.5 15 -1.5

8 —-0.251 -0.209 0.0418 0.418 0.836 0.209
Qs 9 -0.225 -0.115 0449 0.225 0.674 0.225

10 —0.0461 —0.395 0.132 1.050 0.132 0.263
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S-polytopes that are not vertex figures of neighborly 6-polytopes. Possible
candidates would be some of the “‘vertex figures” of the non-polytopes Qss—Qs,.

(3) We would like to draw the reader’s attention to the following unexplained
phenomenon. The determinants det Q; separate the polytopes from the non-
polytopes: det Q; =249640 for i =37, while detQ, =287872 for i =38! A
similar phenomenon was discovered by Altshuler [AL] while enumerating the
2-neighborly combinatorial 3-manifolds with 10 vertices.
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